Smartwatches, AI, and the Three Faces of Technological Determinism: A Marxist Critique of Digital Capitalism

Authors

  • Ressa Uli Patrissia Student Doctoral Communication Science, Universitas Sahid, Jakarta, Indonesia
  • Mochamad Husni Lecture Doctoral Communication Science, Universitas Sahid, Jakarta, Indonesia

DOI:

https://doi.org/10.51601/ijse.v5i3.178

Abstract

This study explores the role of artificial intelligence (AI) in smartwatches through the critical lens of Karl Marx’s theory of technological determinism. In contrast to functionalist and adoption-centered analyses, the research problematizes the ideological and socio-economic structures underpinning wearable technologies. The objective is to reinterpret smartwatches not as neutral innovations but as artifacts embedded in digital capitalism—functioning simultaneously as autonomous agents, social constraints, and political instruments. Employing a qualitative, conceptual methodology grounded in Marxist historiography and critical media studies, the research synthesizes canonical texts with contemporary scholarship on AI, surveillance, and labor. The results reveal that AI-powered smartwatches reinforce capitalist imperatives of productivity, data commodification, and self-discipline, ultimately contributing to behavioral governance and user alienation. This study offers a dialectical framework that exposes the myth of technological neutrality and reframes wearable AI as a site of ideological reproduction. It contributes to communication and technology studies by advancing a historically grounded critique of how digital devices shape, and are shaped by, class dynamics, capitalist rationality, and power structures.

Downloads

Download data is not yet available.

References

Ahmed, N., Wahed, M., & Tolooie, A. (2021). Artificial intelligence: A review of its historical evolution, current applications and future prospects. AI Perspectives, 3(1), 1–18. https://doi.org/10.1186/s42467-021-00016-7

Alavi, A. H., Jiao, P., Buttlar, W. G., & Lajnef, N. (2021). Robust machine learning algorithms for smart wearable systems: From biometrics to health monitoring. . Sensors, 21(4), 1323. https://doi.org/10.3390/s21041323

Alshehri, M., Alhussain, T., & Alsabhan, W. (2023). Understanding user perceptions and adoption of wearable devices: A mixed-method approach. Journal of Business Research, 158, 113679. https://doi.org/10.1016/j.jbusres.2023.113679

Alshurafa, N., Jain, J., Stankovic, J. A., & al’Absi, M. (2020). Robustness and personalization of health monitoring with wearable devices. IEEE Pervasive Computing, 19(3), 34–44. https://doi.org/10.1109/MPRV.2020.2994077

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8

Antunes, F. R. (2017). Marx, maquinaria e grande indústria: o desenvolvimento tecnológico no Livro I de Das Kapital. São Paulo: Alameda.

Bimber, B. (2021). Three faces of technological determinism. Social Studies of Science, 51(4), 497–525. https://doi.org/10.1177/03063127211015321

Brynjolfsson, E., & McElheran, K. (2019). The rapid adoption of data-driven decision-making. American Economic Review: Papers and Proceedings, 109, 133–139. https://doi.org/10.1257/pandp.20191075

Burrell, J. (2019). How the machine ‘thinks’: Understanding opacity in machine learning algorithms. Big Data & Society, 6(1), 1–12. https://doi.org/10.1177/2053951719836057

Castelvecchi, D. (2021). Are deep-learning algorithms too power-hungry for general use? Nature, 592(7855), 480–481. https://doi.org/10.1038/d41586-021-01186-6

Chan, J., Latzko-Toth, G., & Lee, F. L. F. (2020). Digital distinction: Class, gender and the aestheticization of wearable technologies. Information, Communication & Society, 23(5), 729–747. https://doi.org/10.1080/1369118X.2020.1713841

Chatterjee, S., Rana, N. P., Tamilmani, K., & Sharma, A. (2020). The next generation of smart cities: Technological evolution and economic implications. Technological Forecasting and Social Change, 153, 119938. https://doi.org/10.1016/j.techfore.2020.119938

Chung, K., Lee, K. C., & Han, H. (2020). Understanding consumer behavior in wearable technology: Motivation and adoption. Telematics and Informatics, 53, 101430. https://doi.org/10.1016/j.tele.2020.101430

Couldry, N., & Mejias, U. A. (2019). The Costs of Connection: How Data Is Colonizing Human Life and Appropriating It for Capitalism. Stanford University Press.

Cunningham, S., Tondeur, J., & Vanderlinde, R. (2020). Digital wearables and the quantified self: Ethical implications in education. Computers & Education, 148, 103804. https://doi.org/10.1016/j.compedu.2019.103804

Dahlin, E. (2023). And say the AI responded? Dancing around ‘autonomy’ in AI/human encounters. AI & Society. . https://doi.org/10.1007/s00146-023-01571-w

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. ArXiv Preprint ArXiv:1702.08608. https://doi.org/10.48550/arXiv.1702.08608

Eubanks, V. (2019a). Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor. Picador.

Eubanks, V. (2019b). Automating inequality: How high-tech tools profile, police, and punish the poor. St. Martin’s Press.

Fernando Rocha Antunes, P. (2017). Marx, maquinaria e grande indústria: o desenvolvimento tecnológico no Livro I de Das Kapital.

Fuchs, C. (2020). Marxist Humanism and Communication Theory: Media, Communication and Society Volume Two. Routledge.

Fuchs, C. (2022). Digital capitalism: Media, communication and society. Routledge. https://doi.org/10.4324/9781003188720

Hern, A. (2020). From logic to learning: The AI timeline. The Guardian. https://www.theguardian.com

IDC. (2023). Worldwide quarterly wearable device tracker. . International Data Corporation. https://www.idc.com

Kim, Y., & Sundar, S. S. (2021). Wearable technology: A dynamic affordance perspective. Computers in Human Behavior, 117, 106652.

Krey, N., A. Rauschnabel, P., Chuah, S., Nguyen, B., Wilfried Erwin Hein, D., Rossmann, A., & Lade, S. (2016). Smartwatches: Accessory or Tool? The Driving Force of Visibility and Usefulness. .

Krey, N., Rauschnabel, P. A., & Rossmann, A. (2019). Wearable technology and the self: How wearables affect consumer decision making. Journal of Business Research, 100, 415–422. https://doi.org/10.1016/j.jbusres.2018.10.048

LeCun, Y., Bengio, Y., & Hinton, G. (2019). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539

Lee, J., & Kim, H. (2022). Visual aesthetics and affordances in wearable device adoption: A consumer study. International Journal of Human–Computer Interaction, 38(15), 1410–1424. https://doi.org/10.1080/10447318.2022.2042882

Lu, X., & Liu, W. (2021). The social construction of wearable technology: A case study of the Apple Watch in China. New Media & Society, 23(12), 3545–3564. https://doi.org/10.1177/1461444820948790

Lu, Y., Huang, H., Zhang, X., & Maharjan, S. (2020). Communication-efficient federated learning and permissioned blockchain for privacy-preserving smart healthcare. IEEE Internet of Things Journal, 8(3), 1646–158. https://doi.org/10.1109/JIOT.2020.3008610

Lupton, D. (2021a). Data Selves: More-than-Human Perspectives. Polity Press.

Lupton, D. (2021b). The quantified self: A sociology of self-tracking. Polity Press.

Lupton, D., & Jutel, A. (2021). ‘It’s like having a personal trainer in your pocket!’: A sociological analysis of self-tracking and the body. Body & Society, 27(3), 57–76. https://doi.org/10.1177/1357034X211029861

Marx, K. (1867). Capital: A Critique of Political Economy: Vol. I. London: Penguin Books.

Müller, C. (2020). Ethics of artificial intelligence and robotics (In E. N. Zalta). The Stanford Encyclopedia of Philosophy (Fall 2020 Edition). https://plato.stanford.edu/archives/fall2020/entries/ethics-ai/

Noble, S. U. (2018). Algorithms of Oppression: How Search Engines Reinforce Racism. NYU Press.

Pantzar, M., & Ruckenstein, M. (2019). Living the metrics: Self-tracking and situated objectivity. DIGITAL HEALTH, 5, 1–10. https://doi.org/10.1177/2055207619844870

Raji, I. D., Bender, E. M., Krishnan, M., & Shankar, S. (2020). Saving face: Investigating the ethical concerns of facial recognition auditing. FAT ’20: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, 145–155. https://doi.org/10.1145/3351095.3372874

Rauschnabel, P. A., He, J., & Ro, Y. K. (2020). Antecedents to the adoption of augmented reality smart glasses: A closer look at privacy risks. Journal of Business Research, 110, 306–318. https://doi.org/10.1016/j.jbusres.2020.01.008

Rieger, K. L., Cummings, E., & Taylor, J. (2022). Affective computing and human-AI interaction in wearable tech: Ethical and practical considerations. AI & Society, 37, 1409–1420. https://doi.org/10.1007/s00146-021-01206-5

Ruckenstein, M., & Dow Schüll, N. (2023). The datafication of health: New tactics of self-tracking and the politics of visibility. Journal of Cultural Economy, 16(1), 1–15.

Russell, S., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed.). Pearson Education.

Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., & Müller, K. R. (2021). Explainable AI: Interpreting, explaining and visualizing deep learning. Springer.

Terranova, T. (2020). Free labor: Producing culture for the digital economy: Vol. Creative Industries (In J. Hartley et al). Wiley-Blackwell.

Tjoa, E., & Guan, C. (2021). A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. IEEE Transactions on Neural Networks and Learning Systems, 32(11), 4793–4813. https://doi.org/10.1109/TNNLS.2020.3027314

Uzir, H. H., Kassim, E. S., & Karim, M. S. A. (2023). Artificial intelligence in wearable technology: Challenges, ethics, and opportunities. Technology in Society, 74, 102295. https://doi.org/10.1016/j.techsoc.2023.102295

Uzir, H. U., Bukari, Z., Al Halbusi, H., Lim, R., Wahab, S. N., Rasul, T., & Eneizan, B. (2023). Applied artificial intelligence: Acceptance-intention-purchase and satisfaction on smartwatch usage in a Ghanaian context. Technological Forecasting and Social Change, 189, 122377. https://doi.org/10.1016/j.techfore.2023.122377

Zhang, L. (2023). Artificial Intelligence: 70 Years Down the Road. Journal of Information Technology Research, 16(1), 1–16. https://doi.org/10.4018/JITR.321545

Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. New York: Public Affairs.

Downloads

Published

2025-07-24

How to Cite

Uli Patrissia, R., & Husni, M. . (2025). Smartwatches, AI, and the Three Faces of Technological Determinism: A Marxist Critique of Digital Capitalism. International Journal of Science and Environment (IJSE), 5(3), 239–257. https://doi.org/10.51601/ijse.v5i3.178

Issue

Section

Articles